• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Communities & Collections
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
MoF Repository
  1. Home
  2. Browse by Author

Browsing by Author "Potter, Ian D."

Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Removal of picloram herbicide from an aqueous environment using polymer inclusion membranes
    (Elsevier Ltd) Mwakalesi, Alinanuswe J.; Potter, Ian D.
  • No Thumbnail Available
    Item
    Targeting of cationic organic pesticide residues using polymer inclusion membranes containing anacardic acid from cashew nut shell liquid as a green carrier
    (Elsevier Ltd) Mwakalesi, Alinanuswe J.; Potter, Ian D.
  • No Thumbnail Available
    Item
    Targeting of cationic organic pesticide residues using polymer inclusion membranes containing anacardic acid from cashew nut shell liquid as a green carrier
    (Elsevier Ltd, 2021-07-21) Mwakalesi, Alinanuswe J.; Potter, Ian D.
    Many emerging organic pollutants exist as cationic residues at environmentally relevant pH. This indicates a need to develop economically viable and robust methods to remove such residues from environmental waters. In this paper, we report using polymer inclusion membranes (PIMs) containing anacardic acid (AA), sourced from cashew nut shells, as an acidic carrier for the extraction and transport of 4-amino-2-chloropyridine (ACP), paraquat and diquat as representative target solutes of organic pesticide residues in aqueous solutions. Amounts of cellulose triacetate (CTA) as polymer, 2–nitrophenyl octyl ether (NPOE) as plasticiser, AA as carrier, and 1- dodecanol as modifier were used to prepare membranes. An optimal composition of 30 wt% CTA, 40 wt% NPOE, 10 wt% AA and 20 wt% dodecanol produced an initial flux of 364 (± 16) × 10 − 8 mol m − 2 s − 1 for transport of ACP. The extraction performance of AA was comparable to bis-(2-ethylhexyl) phosphoric acid, a widely used acidic carrier, in PIMs of similar composition. PIMs utilizing AA were also successfully applied to a sample of environmental water for the competitive recovery of ACP, paraquat and diquat, each at 500 μ g/L. Using chemicals from plants as active reagents was shown to be an effective strategy to enhance the green chemistry credentials associated with methods for water remediation.

Commission for Science and Technology | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback