A Review of the Mathematical Models for Brucellosis Infectiology and Control Strategies

No Thumbnail Available

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Journal of Mathematics and Informatics

Abstract

Description

This research article published by the Journal of Mathematics and Informatics Vol. 19, 2020
Brucellosis is a zoonotic bacterial infection that can be acquired by humans from infected animals' meat, urine, body fluids, aborted materials, unpasteurized milk, and milk products or contaminated environment. Mathematical models for infectious diseases have been used as important tools in providing useful information regarding the transmission and effectiveness of the available control strategies. In this paper, a review of the available compartmental mathematical models for Brucellosis was done. The main purpose was to assess their structure, populations involved, the available control strategies and suitability in predicting the disease incidence and prevalence in different settings. Diversities have been observed in the reviewed mathematical models; some models incorporated seasonal variations in a single animal population, some ignored the contributions of the contaminated environment while others considered the cattle or sheep population only. Most of the models reviewed have not considered the contribution of wild animals in the dynamics of Brucellosis. Some models do not match the real situation in most affected areas like sub-Saharan African region and Asian countries where wild animals, cattle and small ruminants share grazing areas and water points. Thus, to avoid unreliable results, this review reveals the need to affirm and incorporate wild animals, livestock, humans and seasonal weather parameters in the spread of Brucellosis and in planning for its controls.

Keywords

Research Subject Categories::NATURAL SCIENCES

Citation