COSTECH Integrated Repository

Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method.

Show simple item record

dc.creator Pang, Tianting
dc.creator Aye Chan, Thet Su
dc.creator Shen, Junjie
dc.creator Jande, Yusufu A.
dc.date 2020-06-10T05:37:07Z
dc.date 2020-06-10T05:37:07Z
dc.date 2020-09-01
dc.date.accessioned 2022-10-25T09:24:40Z
dc.date.available 2022-10-25T09:24:40Z
dc.identifier https://doi.org/10.1016/j.chemosphere.2020.126950
dc.identifier https://dspace.nm-aist.ac.tz/handle/20.500.12479/769
dc.identifier.uri http://hdl.handle.net/123456789/95666
dc.description This research article published by Elsevier Ltd., 2020
dc.description Metal-modified carbon materials have been widely used for fluoride removal, but the traditional impregnation by soaking method suffers from low loading of metals and substantial use of chemicals. This study proposed a new approach to prepare zirconium modified activated carbon fibres (Zr-ACF) by a drop-coating method. Using the same amount of chemicals, the drop-coating method yielded a 5.5 times higher fluoride adsorption capacity than the soaking method due to more effective loading of Zr(IV) onto ACF. The effects of various preparation conditions, including the addition of a complexing agent (oxalic acid) and Zr/ACF mass ratio (0.2-1), were investigated. Zr-ACF prepared by drop-coating was characterised by SEM and BET, and the functional groups involved in the anchoring of Zr(IV) on ACF and the adsorption of fluoride onto Zr-ACF were identified by FTIR and XPS. Adsorption experiments at pH between 3 and 11 revealed that ion exchange and electrostatic attraction were the main adsorption mechanisms at different pH levels. Co-existing anions such as CO, HCO and Cl had an insignificant negative impact (<5%) on fluoride adsorption capacity while SO decreased fluoride adsorption capacity by 11.5%. The adsorption kinetics followed the pseudo-second-order model. The adsorption isotherms followed the Langmuir isotherm model with a maximum fluoride adsorption capacity of 28.50 mg/L at 25 °C, which was higher than other carbon-based materials in the literature. The remarkable improvement of adsorption capacity and reduced chemical consumption demonstrate that Zr-ACF prepared by drop-coating is a promising adsorbent for fluoride removal.
dc.format application/pdf
dc.language en
dc.publisher Elsevier Ltd
dc.subject Activated carbon fibre
dc.subject Adsorption
dc.subject Drop-coating
dc.subject Fluoride
dc.subject Zirconium
dc.title Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method.
dc.type Article


Files in this item

Files Size Format View
JA_MEWES_2020.pdf 165.2Kb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search COSTECH


Advanced Search

Browse

My Account