Electrochemical Sensing Fabricated with TaO Nanoparticle-Electrochemically Reduced Graphene Oxide Nanocomposite for the Detection of Oxytetracycline.
No Thumbnail Available
Date
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract
Description
This Research Article published by MDPI, 2020
A novel tantalum pentoxide nanoparticle-electrochemically reduced graphene oxide nanocomposite-modified glassy carbon electrode (TaO-ErGO/GCE) was developed for the detection of oxytetracycline in milk. The composition, structure and morphology of GO, TaO, and TaO-ErGO were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Oxytetracycline electrochemical behavior on the bare GCE, GO/GCE, ErGO/GCE, and TaO-ErGO/GCE was studied by cyclic voltammetry. The voltammetric conditions (including scan rate, pH, deposition potential, and deposition time) were systematically optimized. With the spacious electrochemical active area, the TaO-ErGO/GCE showed a great magnification of the oxidation signal of oxytetracycline, while that of the other electrodes (GCE, GO/GCE, ErGO/GCE) could not reach the same level. Under the optimum conditions, the currents were proportional to the oxytetracycline concentration in the range from 0.2 to 10 μM, and a low detection limit of 0.095 μM (S/N = 3) was detectable. Moreover, the proposed TaO-ErGO/GCE performed practically with satisfactory results. The preparation of TaO-ErGO/GCE in the current work provides a minor outlook of detecting trace oxytetracycline in milk.
A novel tantalum pentoxide nanoparticle-electrochemically reduced graphene oxide nanocomposite-modified glassy carbon electrode (TaO-ErGO/GCE) was developed for the detection of oxytetracycline in milk. The composition, structure and morphology of GO, TaO, and TaO-ErGO were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Oxytetracycline electrochemical behavior on the bare GCE, GO/GCE, ErGO/GCE, and TaO-ErGO/GCE was studied by cyclic voltammetry. The voltammetric conditions (including scan rate, pH, deposition potential, and deposition time) were systematically optimized. With the spacious electrochemical active area, the TaO-ErGO/GCE showed a great magnification of the oxidation signal of oxytetracycline, while that of the other electrodes (GCE, GO/GCE, ErGO/GCE) could not reach the same level. Under the optimum conditions, the currents were proportional to the oxytetracycline concentration in the range from 0.2 to 10 μM, and a low detection limit of 0.095 μM (S/N = 3) was detectable. Moreover, the proposed TaO-ErGO/GCE performed practically with satisfactory results. The preparation of TaO-ErGO/GCE in the current work provides a minor outlook of detecting trace oxytetracycline in milk.
Keywords
Ta2O5-ErGO composition, Electrochemical reduced graphene oxide, Modified electrode, Oxytetracycline, Voltammetric determination