Geometrical Structure, Vibrational Spectra and Thermodynamic Properties of Chitosan Constituents by DFT Method
No Thumbnail Available
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Science Publishing Group
Abstract
Description
This research article published by Science Publishi9ng Group, 2014
The interaction between glucosamine molecules has been studied theoretically. The geometrical structures of monomer (A), dimer (AA) and trimer (AAA) molecules of glucosamine were optimized and vibrational spectra were calculated by DFT/B3LYP method using GAMESS software (Firefly version 8.0.0). The theoretical vibrational spectra for the glucosamine dimer and trimer correspond well to the experimental IR spectrum of chitosan. The energies and enthalpies of association of A to form the dimer and trimer have been determined. The enthalpies of dimerization, A + A = AA + H2O, and trimerization, AA + A = AAA + H2O, are 48 and 45 kJ/mol, respectively. The thermodynamic functions of the monomer, dimer, and trimer molecules of glucosamine have been calculated.
The interaction between glucosamine molecules has been studied theoretically. The geometrical structures of monomer (A), dimer (AA) and trimer (AAA) molecules of glucosamine were optimized and vibrational spectra were calculated by DFT/B3LYP method using GAMESS software (Firefly version 8.0.0). The theoretical vibrational spectra for the glucosamine dimer and trimer correspond well to the experimental IR spectrum of chitosan. The energies and enthalpies of association of A to form the dimer and trimer have been determined. The enthalpies of dimerization, A + A = AA + H2O, and trimerization, AA + A = AAA + H2O, are 48 and 45 kJ/mol, respectively. The thermodynamic functions of the monomer, dimer, and trimer molecules of glucosamine have been calculated.
Keywords
Glucosamine, Glucosamine Oligomers, Hydrogen Bond