Parameterized Algorithms in Smooth 4-Regular Hamiltonian Graphs

dc.creatorMujuni, Egbert
dc.date2016-09-21T13:23:29Z
dc.date2016-09-21T13:23:29Z
dc.date2008
dc.date.accessioned2018-03-27T08:58:09Z
dc.date.available2018-03-27T08:58:09Z
dc.descriptionFull text can be accessed at http://link.springer.com/article/10.1007/s11786-007-0031-5
dc.descriptionSmooth 4-regular hamiltonian graphs are generalizations of cycle plus triangles graphs. It has been shown that both the independent set and 3-colorability problems are NP-Complete in this class of graphs. In this paper we show that these problems are fixed parameter tractable if we choose the number of inner cycles as parameter.
dc.identifierMujuni, E., 2008. Parameterized algorithms in smooth 4-regular Hamiltonian graphs. Mathematics in Computer Science, 1(4), pp.701-708.
dc.identifier1661-8289
dc.identifierhttp://hdl.handle.net/20.500.11810/3930
dc.identifier10.1007/s11786-007-0031-5
dc.identifier.urihttp://hdl.handle.net/20.500.11810/3930
dc.languageen
dc.publisherSpringer
dc.subjectAlgorithm
dc.subjectParameterized complexity
dc.subjectGraph coloring
dc.subjectIndependent set
dc.titleParameterized Algorithms in Smooth 4-Regular Hamiltonian Graphs
dc.typeJournal Article, Peer Reviewed

Files