Nutrients’ distribution and their impact on Pangani River Basin’s ecosystem – Tanzania
No Thumbnail Available
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor & Francis Group
Abstract
Description
Research Articles published by Taylor & Francis Group
Surface and groundwater from Pangani River Basin (PRB) were sampled in dry and wet seasons, analysed for dissolved organic and inorganic nutrients (N, P, Si and Urea). There was spatial and seasonal nutrients’ variability, with enrichment of dissolved inorganic fractions accumulated from natural and anthropogenic sources. Silicates increased in dry season, whereas nitrate, ammonium, phosphate and urea increased in wet season; except for phosphate, other nutrients increased from upstream to the river mouth. High rate of chemical weathering possibly due to tropical climate and volcanic rocks has caused PRB to have higher concentration of silicates than average freshwater African Rivers. Contribution of PRB to the coast of Indian Ocean was 2.6, 39.0, 45.2, 67.4 and 5444.8 (mol/km2/yr) for nitrite, phosphate, ammonium, nitrate and silicates, respectively, which were lower than most of the tropical rivers in the world. Levels of nitrate and phosphate for most of the stations were higher than recommended levels for aquatic ecosystem health. Furthermore, observed hypoxia condition in some stations threatens aquatic life. This study recommends the efficient use of fertilizers to reduce nutrients’ uptake into the lakes and rivers so as to meet the recommended level for aquatic and human health.
Surface and groundwater from Pangani River Basin (PRB) were sampled in dry and wet seasons, analysed for dissolved organic and inorganic nutrients (N, P, Si and Urea). There was spatial and seasonal nutrients’ variability, with enrichment of dissolved inorganic fractions accumulated from natural and anthropogenic sources. Silicates increased in dry season, whereas nitrate, ammonium, phosphate and urea increased in wet season; except for phosphate, other nutrients increased from upstream to the river mouth. High rate of chemical weathering possibly due to tropical climate and volcanic rocks has caused PRB to have higher concentration of silicates than average freshwater African Rivers. Contribution of PRB to the coast of Indian Ocean was 2.6, 39.0, 45.2, 67.4 and 5444.8 (mol/km2/yr) for nitrite, phosphate, ammonium, nitrate and silicates, respectively, which were lower than most of the tropical rivers in the world. Levels of nitrate and phosphate for most of the stations were higher than recommended levels for aquatic ecosystem health. Furthermore, observed hypoxia condition in some stations threatens aquatic life. This study recommends the efficient use of fertilizers to reduce nutrients’ uptake into the lakes and rivers so as to meet the recommended level for aquatic and human health.
Keywords
ecosystem health, human health, river basin