On Minimizing the Ultimate Ruin Probability of an Insurer by Reinsurance
No Thumbnail Available
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Hindawi
Abstract
Description
This research article published by Hindawi, 2018
We consider an insurance company whose reserves dynamics follow a diffusion-perturbed risk model. To reduce its risk, the company chooses to reinsure using proportional or excess-of-loss reinsurance. Using the Hamilton-Jacobi-Bellman (HJB) approach, we derive a second-order Volterra integrodifferential equation (VIDE) which we transforminto a linear Volterra integral equation (VIE) of the second kind. We then proceed to solve this linear VIE numerically using the block-by-block method for the optimal reinsurance policy that minimizes the ultimate ruin probability for the chosen parameters. Numerical examples with both light- and heavy-tailed distributions are given. The results show that proportional reinsurance increases the survival of the company in both light- and heavy-tailed distributions for the Cram´er-Lundberg and diffusion-perturbed models.
We consider an insurance company whose reserves dynamics follow a diffusion-perturbed risk model. To reduce its risk, the company chooses to reinsure using proportional or excess-of-loss reinsurance. Using the Hamilton-Jacobi-Bellman (HJB) approach, we derive a second-order Volterra integrodifferential equation (VIDE) which we transforminto a linear Volterra integral equation (VIE) of the second kind. We then proceed to solve this linear VIE numerically using the block-by-block method for the optimal reinsurance policy that minimizes the ultimate ruin probability for the chosen parameters. Numerical examples with both light- and heavy-tailed distributions are given. The results show that proportional reinsurance increases the survival of the company in both light- and heavy-tailed distributions for the Cram´er-Lundberg and diffusion-perturbed models.
Keywords
Research Subject Categories::MATHEMATICS