Dividend Payouts in a Perturbed Risk Process Compounded By Investments of the Black-Scholes Type
No Thumbnail Available
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
Full text can be accessed at
http://search.proquest.com/openview/217fb7f4d22bffc20e97cf12041ecf7e/1.pdf?pq-origsite=gscholar&cbl=1816356
This work addresses the issue of dividend payouts of an insurer whose portfolio is exposed to insurance risk. The insurance risk arises from the perturbed classical surplus process commonly known as the Cramér-Lundberg model in the insurance literature. To enhance her financial base, the insurer invests into assets whose price dynamics are governed by a Black-Scholes model. We derive a linear Volterra integral equation of the second kind and solve the equations for each chosen barrier, thus generating corresponding dividend value functions. We have obtained the optimal barrier that maximises the expected discounted dividend payouts prior to ruin.
This work addresses the issue of dividend payouts of an insurer whose portfolio is exposed to insurance risk. The insurance risk arises from the perturbed classical surplus process commonly known as the Cramér-Lundberg model in the insurance literature. To enhance her financial base, the insurer invests into assets whose price dynamics are governed by a Black-Scholes model. We derive a linear Volterra integral equation of the second kind and solve the equations for each chosen barrier, thus generating corresponding dividend value functions. We have obtained the optimal barrier that maximises the expected discounted dividend payouts prior to ruin.
Keywords
Cramér-Lundberg model, Insurance, Volterra integral equations, Barrier strategy, Dividends