Understanding the Electronic and π-conjugation Roles of Quinoline on Ligand Substitution Reactions of Pt(II) Complexes

dc.creatorKinunda, Grace
dc.creatorJaganyi, Deogratias
dc.date2018-09-19T11:59:37Z
dc.date2018-09-19T11:59:37Z
dc.date2014
dc.date.accessioned2021-05-03T13:19:55Z
dc.date.available2021-05-03T13:19:55Z
dc.descriptionA kinetic and mechanistic study of chloride substitution by thiourea nucleophiles, namely thiourea, N-methylthiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea in the complexes chlorobis-(2-pyridylmethyl)amineplatinum(II) (Pt1), chloro N-(2-pyridinylmethyl)-8-quinolinamineplatinum(II) (Pt2), chloro N-(2-pyridinylmethylene)-8-quinolinamineplatinum(II) (Pt3) and chlorobis(8-quinolinyl)amineplatinum(II) (Pt4) was undertaken under pseudo-first-order conditions using UV–visible spectrophotometry. The study showed that lability of the chloro leaving group is dependent on the strength of π-interactions between the filled dπ-orbitals of the metal and the empty π*-orbitals of the chelating ligand in the following manner: Pt1 > Pt3 > Pt2 > Pt4. Introduction of the quinoline moiety within the non-labile chelated framework of the Pt(II) complexes results in a more electron-rich metal centre which retards the approach of the nucleophile through repulsion. Moreover, the net σ-effect of the ligand moiety plays a significant role in controlling the reactivity of the complexes. The experimental results are interpreted with the aid of computational data obtained by density functional theory (B3LYP(CPCM)/LANL2DZp//B3LYP/-LANL2DZp) calculations. The mode of substitution remains associative as supported by negative entropies and the dependence of the second-order rate constants on the concentration of entering nucleophiles.
dc.identifierG Kinunda, D Jaganyi - Transition Metal Chemistry, 2014 - Springer
dc.identifierhttp://hdl.handle.net/20.500.11810/4913
dc.identifier10.1007/s11243-014-9819-8
dc.identifier.urihttp://hdl.handle.net/20.500.11810/4913
dc.languageen
dc.publisherSpringer
dc.subjectMetal Centre
dc.subjectDensity Functional Theory Calculation
dc.subjectTerpy
dc.subjectElectronic Supplementary Information
dc.subjectQuinoline Moiety
dc.titleUnderstanding the Electronic and π-conjugation Roles of Quinoline on Ligand Substitution Reactions of Pt(II) Complexes
dc.typeJournal Article, Peer Reviewed

Files