Approximating web communities using subspace decomposition

dc.creatorEustace, Justine
dc.creatorWang, Xingyuan
dc.creatorLi, Junqiu
dc.date2021-05-05T09:57:28Z
dc.date2021-05-05T09:57:28Z
dc.date2014
dc.date.accessioned2022-10-20T13:47:42Z
dc.date.available2022-10-20T13:47:42Z
dc.descriptionAbstract. Full article available at https://doi.org/10.1016/j.knosys.2014.06.017
dc.descriptionHerein, we propose an algorithm to approximate web communities from the topic related web pages. The approximation is achieved by subspace factorization of the topic related web pages. The factorization process reveals existing association between web pages such that the closely related web pages are extracted. We vary the approximation values to identify varied degrees of relationship between web pages. Experiments on real data sets show that the proposed algorithm reduces the impact of unrelated links and therefore can be used to control spam links in web pages.
dc.identifierEustace, J., Wang, X., & Li, J. (2014). Approximating web communities using subspace decomposition. Knowledge-Based Systems, 70, 118-127.
dc.identifierDOI: 10.1016/j.knosys.2014.06.017
dc.identifierhttp://hdl.handle.net/20.500.12661/2946
dc.identifier.urihttp://hdl.handle.net/20.500.12661/2946
dc.languageen
dc.publisherElsevier
dc.subjectAlgorithm
dc.subjectWeb pages
dc.subjectWeb communities
dc.subjectWeb graphs
dc.subjectSubspace decomposition
dc.subjectInformation retrieval
dc.subjectCommunity detection
dc.subjectSpam detection
dc.titleApproximating web communities using subspace decomposition
dc.typeArticle

Files