This research article published by MDPI, 2020
Termite mound soils are reportedly utilized as an alternative to NPK fertilizers by cash
constrained smallholder farmers in some parts of Southern Africa. However, there is limited
knowledge regarding their mineral nutritional value. The intention of this work was therefore to
investigate the macro and micronutrient composition of different sections of the termite mounds;
top, base and neighboring areas. The study approach involved physical and chemical analysis of 36
sites across Pemba and Choma districts in Southern Zambia through collection of soil samples in
triplicate at 0–20 cm depth, using a soil auger. Findings revealed that the soil pH had elevated
levels in the base segments of the termite mounds compared with the top and the neighbouring
soils. However, elevated N, P and K levels were recorded in the top sections with significant
differences (P < 0.05) in clay and silt composition observed. Additionally, metallic micronutrients,
Cu and Zn were also found to be elevated in termite mounds in contrast to surrounding soils. We
concluded that top termite mound soil should be considered as part of an integrated nutrient
management strategy by financially challenged smallholder farmers cultivating in light textured
soils of southern Africa.