COSTECH Integrated Repository

Integrating serological and genetic data to quantify cross-species transmission: brucellosis as a case study

Show simple item record

dc.creator Viana, Mafalda
dc.creator Shirima, Gabriel
dc.creator John, Kunda
dc.creator Fitzpatrick, Julie
dc.creator Kazwala, Rudovick
dc.creator Buza, Joram
dc.creator Cleaveland, Sarah
dc.creator Haydon, Daniel
dc.creator Halliday, Jo
dc.date 2019-05-22T11:31:51Z
dc.date 2019-05-22T11:31:51Z
dc.date 2016-03-03
dc.date.accessioned 2022-10-25T09:21:07Z
dc.date.available 2022-10-25T09:21:07Z
dc.identifier https://doi.org/10.1017/S0031182016000044
dc.identifier http://dspace.nm-aist.ac.tz/handle/123456789/156
dc.identifier.uri http://hdl.handle.net/123456789/95442
dc.description Research Article published by Cambridge University Press
dc.description Epidemiological data are often fragmented, partial, and/or ambiguous and unable to yield the desired level of understanding of infectious disease dynamics to adequately inform control measures. Here, we show how the information contained in widely available serology data can be enhanced by integration with less common type-specific data, to improve the understanding of the transmission dynamics of complex multi-species pathogens and host communities. Using brucellosis in northern Tanzania as a case study, we developed a latent process model based on serology data obtained from the field, to reconstruct Brucella transmission dynamics. We were able to identify sheep and goats as a more likely source of human and animal infection than cattle; however, the highly cross-reactive nature of Brucella spp. meant that it was not possible to determine which Brucella species (B. abortus or B. melitensis) is responsible for human infection. We extended our model to integrate simulated serology and typing data, and show that although serology alone can identify the host source of human infection under certain restrictive conditions, the integration of even small amounts (5%) of typing data can improve understanding of complex epidemiological dynamics. We show that data integration will often be essential when more than one pathogen is present and when the distinction between exposed and infectious individuals is not clear from serology data. With increasing epidemiological complexity, serology data become less informative. However, we show how this weakness can be mitigated by integrating such data with typing data, thereby enhancing the inference from these data and improving understanding of the underlying dynamics.
dc.format application/pdf
dc.language en_US
dc.publisher Cambridge University Press
dc.subject data integration
dc.subject epidemiological modelling
dc.subject Bayesian modelling
dc.subject state-space models
dc.title Integrating serological and genetic data to quantify cross-species transmission: brucellosis as a case study
dc.type Article


Files in this item

Files Size Format View
JA_LiSE_2016.pdf 647.5Kb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search COSTECH


Advanced Search

Browse

My Account