Bootstrap confidence intervals of CNpk for inverse Rayleigh and log-logistic distributions

dc.creatorRao, G. S
dc.creatorAslam, Muhammad
dc.creatorKantam, R. R. L
dc.date2020-11-25T07:46:43Z
dc.date2020-11-25T07:46:43Z
dc.date2016
dc.date.accessioned2022-10-20T13:09:18Z
dc.date.available2022-10-20T13:09:18Z
dc.descriptionAbstract. Full text available at https://doi.org/10.1080/00949655.2015.1040799
dc.descriptionIn this article bootstrap confidence intervals of process capability index as suggested by Chen and Pearn [An application of non-normal process capability indices. Qual Reliab Eng Int. 1997;13:355–360] are studied through simulation when the underlying distributions are inverse Rayleigh and log-logistic distributions. The well-known maximum likelihood estimator is used to estimate the parameter. The bootstrap confidence intervals considered in this paper consists of various confidence intervals. A Monte Carlo simulation has been used to investigate the estimated coverage probabilities and average widths of the bootstrap confidence intervals. Application examples on two distributions for process capability indices are provided for practical use.
dc.identifierRao, G. S., Aslam, M., & Kantam, R. R. L. (2016). Bootstrap confidence intervals of C Npk for inverse Rayleigh and log-logistic distributions. Journal of Statistical Computation and Simulation, 86(5), 862-873.
dc.identifierDOI: 10.1080/00949655.2015.1040799
dc.identifierhttp://hdl.handle.net/20.500.12661/2603
dc.identifier.urihttp://hdl.handle.net/20.500.12661/2603
dc.languageen
dc.publisherTaylor & Francis
dc.subjectLog-logistic distribution
dc.subjectRayleigh distribution
dc.subjectConfidence interval
dc.subjectBootstrap confidence intervals
dc.subjectMaximum likelihood estimate
dc.subjectML estimate
dc.subjectProcess capability index
dc.subjectCNpk
dc.subjectInverse rayleigh distribution
dc.titleBootstrap confidence intervals of CNpk for inverse Rayleigh and log-logistic distributions
dc.typeArticle

Files